Теплообменник


Теплообменник, теплообменный аппарат — устройство, в котором осуществляется передача теплоты от горячего теплоносителя к холодному (нагреваемому). Теплоносителями могут быть газы, пары, жидкости. В зависимости от назначения теплообменные аппараты используют как нагреватели и как охладители. Применяется в технологических процессах нефтеперерабатывающей, нефтехимической, химической, газовой и других отраслях промышленности, в энергетике и коммунальном хозяйстве.

Основные типы:

Теплообменники по способу передачи теплоты подразделяют на поверхностные, где отсутствует непосредственный контакт теплоносителей, а передача тепла происходит через твёрдую стенку, и смесительные, где теплоносители контактируют непосредственно. Поверхностные теплообменники в свою очередь подразделяются нарекуперативные и регенеративные, в зависимости от одновременного или поочерёдного контакта теплоносителей с разделяющей их стенкой.

Рекуперативный теплообменник — теплообменник, в котором горячий и холодный теплоносители движутся в разных каналах, в стенке между которыми происходит теплообмен. При неизменных условиях параметры теплоносителей на входе и в любом из сечений каналов, остаются неизменными, независимыми от времени, т.е процесс теплопередачи имеет стационарный характер. Поэтому рекуперативные теплообменники называют также стационарными. Наиболее распространённые в промышленности рекуперативные теплообменники:
+ Кожухотрубные теплообменники,
+ Элементные (секционные) теплообменники,
+ Двухтрубные теплообменники типа "труба в трубе",
+ Витые теплообменники,
+ Погружные теплообменники,
+ Оросительные теплообменники,
+ Ребристые теплообменники,
+ Спиральные теплообменники,
+ Пластинчатые теплообменники,
+ Пластинчато-ребристые теплообменники,
+ Графитовые теплообменники.

Регенеративные теплообменники В регенеративных поверхностных теплообменниках теплоносители (горячий и холодный) контактируют с твердой стенкой поочерёдно. Теплота накапливается в стенке при контакте с горячим теплоносителем и отдаётся при контакте с холодным.

Смесительный теплообменник (или контактный теплообменник) теплообменник — предназначенный для осуществления тепло- и массообменных процессов путем прямого смешивания сред (в отличие от поверхностных теплообменников).Смесительные теплообменники конструктивно устроены проще, нежели поверхностные, более полно используют тепло. Однако, пригодны они лишь в случаях, когда по технологическим условиям произ­водства допустимо смешение рабочих сред.

Конструкции теплообменников

— объемные одна из сред имеет значительный объем в теплообменнике, одна среда сосредоточена в баке большого объема, вторая протекает через змеевик; — скоростные (кожухотрубные) среды движутся с достаточно большой скоростью для увеличения коэффициента теплоотдачи, много мелких трубочек находятся в одной большой (кожух), среды движутся одна в межтрубном пространстве, другая внутри трубочек, обычно в трубочках находится более «грязная» среда, так как их легче чистить;
— пластинчатый теплообменник состоит из набора пластин, среды движутся между пластинами, прост в изготовлении (штампованные пластины складываются с прокладками между ними), легко модифицируется (добавляются или убираются пластины), хорошая эффективность (большая площадь контакта через пластины).
— пластинчато-ребристый теплообменник в отличие от пластинчатого теплообменника состоит из системы разделительных пластин, между которыми находятся ребристые поверхности - насадки, присоединенные к пластинам методом пайки в вакууме.С боков каналы ограничиваются брусками, поддерживающими пластины и образующие закрытые каналы. Таким образом, в основу пластинчато-ребристого теплообменника положена жесткая и прочная цельнопаянная теплообменная матрица, построенная по сотовому принципу и работоспособная (даже в исполнении из алюминиевых сплавов) до давления 100 атм. и выше. В пластинчато-ребристых теплообменниках существует большое количество насадок, что позволяет подбирать геометрию каналов со стороны каждого из потоков, реализовывая оптимальную конструкцию. Основные достоинства данного типа теплообменников - компактность (до 4000 м2/м3) и легкость. Последнее обеспечивается за счет применения при изготовлении теплообменной матрицы пакета из тонколистовых деталей из легких алюминиевых сплавов.
— Оребренные пластинчатые теплообменники, ОПТ состоит из тонкостенных оребренных панелей, изготовленных методом высокочастотной сварки, соединенные поочередно с поворотом на 90 градусов. За счет конструкции, а также многообразия используемых материалов достигаются высокие температуры греющих сред, небольшие сопротивления, высокие показатели отношения телепередающей площади к массе теплообменника, длительный срок службы, низкая стоимость и др. Часто используются для утилизации тепла отходящих газов.
— спиральный теплообменник представляет собой два спиральных канала, навитых из рулонного материала вокруг центральной разде­лительной перегородки — керна, среды движутся по каналам. Одно из назначений спиральных тепло­обменников — нагревание и охлаждение высоковязких жидкостей. При выборе между пластинчатыми и кожухотрубными теплообменниками предпочтительными являются пластинчатые, коэффициент теплопередачи которых более чем в три раза больше, чем у традиционных кожухотрубных. Кроме того, коэффициент полезного действия пластинчатых теплообменников составляет 90-95 %, а занимаемая площадь в 3-4 раза меньше, чем для кожухотрубных.

В то же время пластинчатые теплообменники, оснащённые средствами автоматики, регулирования и надёжной арматурой, позволяют снизить количество теплоносителя, идущего на нагрев воды. А значит, и диаметры трубопроводов и запорно-регулирующей арматуры, снизить нагрузки на сетевые насосы и, соответственно, уменьшить потребление электроэнергии и др.

Но на данный момент стали появляться современные кожухотрубные теплообменники, оснащенные трубками, профилированными таким образом, чтобы рост гидравлического сопротивления ненамного превышал рост теплоотдачи вследствие применения турбулизаторов потока. Это достигается накаткой на внешней поверхности трубы кольцевых или винтообразных канавок, вследствие образования которых на внутренней поверхности трубы образуются плавно очерченные выступы небольшой высоты, интенсифицирующие теплоотдачу в трубах. Данная технология, в дополнение к таким важным показателям как высокая надежность (также при гидравлическом ударе) и меньшая стоимость, дает отечественному кожухотрубному оборудованию дополнительные преимущества по сравнению с иностранными пластинчатыми аналогами. Но это преимущество исчезает при первой промывке такого теплообменника, т.к. очистка внутренних поверхностей трубок с винтообразными канавками практически невозможна и ведет к быстрому выходу такого теплообменника из строя.

Серьёзной проблемой является коррозия теплообменников. Для защиты от коррозии применяется газотермическое напыление трубных досок, труб пароперегревателей. Это относится только к кожухотрубным теплообменникам, изготовленных из углеродистой стали. Пластинчатые теплообменники в подавляющем большинстве изготавливаются из нержавеющей стали.